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SUMMARY

The paper presents a numerical investigation of high-resolution schemes for solving the compressible
Euler and Navier–Stokes equations in the context of implicit large eddy simulation (ILES), also known
as monotone integrated LES (MILES). We have employed three high-resolution schemes: a �ux vector
splitting (FVS), a characteristics-based (Godunov-type) and a hybrid total variation diminishing (TVD)
scheme; and carried out computations of: (i) decaying turbulence in a triply periodic cube and (ii)
compressible �ow around open cavities for low and high Reynolds numbers, at transonic and super-
sonic speeds. The decaying turbulence simulations show that all high-resolution schemes employed here
provide plausible solutions without adding explicit dissipation with the energy spectra being dependent
on the numerics. Furthermore, the ILES results for cavity �ows agree well with previously published
direct numerical simulations and experimental data. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It has been observed for more than a decade that high-resolution methods have characteristics
that mimic the e�ects of �nite viscosity and thermal conductivity and lead to a ‘dissipation’
which is similar to that achieved by adequately resolved numerics involving �nite Reynolds
and Prandtl numbers [1–13].
These methods are currently used to simulate a broad variety of complex �ows, e.g. �ows

that are dominated by vorticity leading to turbulence, �ows featuring shock waves and tur-
bulence, and the mixing of materials. Such �ows are extremely di�cult to practically obtain
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stably and accurately in under-resolved conditions (with respect to grid resolution) using
classical linear, both second- and higher-order accurate schemes.
Recently, there has been an increasing interest in investigating high-resolution methods in

a variety of turbulent �ow computations, see Reference [12] for a recent review. The success
of high-resolution methods to compute turbulent �ows seems to depend on a delicate balance
of truncation errors due to wave-speed-dependent terms (chie�y responsible for numerical
dissipation) in the case of Godunov-type methods and hyperbolic part of the �ux. It is the
essence of this balance that needs to be understood. Results from the implementation of high-
resolution methods in wall-bounded �ows [9, 12] show that in principle there is nothing that
prevents the use of these methods in near wall �ows even without using an explicit turbulence
model. Both ILES and classical LES based on an explicit subgrid scale (SGS) turbulence
modelling pose substantial challenges in high-Reynolds, near-wall �ows, especially in the
presence of separation from gently curved surfaces, where resolution and thus computing-cost
issues are critical.
In the present study, we investigate the limits of the ILES approach in the context of

under-resolved—grid-size bias—simulations, using di�erent high-resolution schemes. Results
are presented from numerical experiments for decaying turbulence in a triply periodic cube
and compressible, open cavity �ows at transonic and supersonic speeds.

2. NUMERICAL FRAMEWORK

The physics of (Newtonian) �uid �ow is governed by the Navier–Stokes equations. These
equations can be solved by considering the coupled generalized conservation laws namely the
continuity, momentum and energy equations

@�
@t
+∇ · (�u) = 0 (1)

@�u
@t

+∇ · (�uu) =−∇ · P (2)

@e
@t
+∇ · (eu) =−∇ · (u · P)− ∇ · q (3)

where u; �, e, and q stand for the velocity components, density, total energy per unit volume,
and heat �ux, respectively. The tensor P for a Newtonian �uid is de�ned by P=p(�; T )I+
2
3�(∇·u)I−�[(∇u)+ (∇u)T], where p(�; T ) is the scalar pressure, I is the identity tensor, T
is the temperature, and � is the dynamic viscosity coe�cient. The above system is completed
by an equation of state. For a perfect gas the equation of state is given by p=�RT , where
R is the gas constant.
For the solution of Equations (1)–(3), we have employed an explicit, third-order TVD

Runge–Kutta scheme [14], central di�erences for the viscous terms and three high-resolution
schemes for the discretization of the advective terms. These schemes are brie�y described be-
low (for further details see References [15, 16]) for the one-dimensional, inviscid counterpart
of the equations in matrix form @U=@t+@E=@x=0, where U is the array of the unknown vari-
ables and E is the �ux associated with the terms in x-direction. The advective �ux derivative
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@E=@x (similarly, for the other advective �ux derivatives) is discretized at the centre of the
control volume (i) using the values of the intercell �uxes, i.e. @E=@x=(Ei+1=2 − Ei−1=2)=�x.
The de�nition of the intercell �ux function distinguishes among the di�erent high-resolution
schemes employed here.
The FVS scheme de�nes the intercell advective �ux as ESW-FVSi+1=2 =E+i+1=2 (UL)+E

−
i+1=2 (UR),

where the left, UL, and right, UR, states of the conservative variables can be obtained by �rst-,
second- or higher-order accurate interpolation schemes. Here, the positive and negative �uxes
are computed by an improved version of the Steger–Warming FVS (SW-FVS) scheme [15, 16]
in conjunction with �rst-order interpolation for UL and UR. The �rst-order interpolation was
selected in order to provide a dissipative numerical scheme that can be compared against less
dissipative options as described below.
The characteristics-based (averaging) scheme [17] is a Godunov-type method that de�nes

the conservative variables along the characteristics as functions of their characteristic values. A
third-order interpolation scheme [15] has been used here to compute the characteristic values
from the left or right states depending on the sign of the characteristic speed (eigenvalues).
The scheme is third-order accurate in both space and time when it is used in conjunction with
a third-order TVD Runge–Kutta scheme for the time integration. The hybrid TVD scheme
de�nes the advective �ux as

Ei+1=2 =  i+1=2E
(SW-FVS)
i+1=2 + (1−  i+1=2)ECBi+1=2

where E(SW-FVS)i+1=2 and ECBi+1=2 are the intercell �uxes according to the SW-FVS and characteris-
tics-based schemes, which are used in conjunction with �rst- and third-order interpolation
schemes, respectively (see References [15, 16] for details). The term  i+1=2 is a limiter function
de�ned by the square of the (local) Mach number di�erences across cell faces [15].
Limiters are the general non-linear mechanism that distinguishes modern methods from

classical linear schemes. Their role is to act as a non-linear switch between more than one
underlying linear method thus adapting the choice of numerical method based upon the be-
haviour of the local solution. Limiters result in non-linear methods even for linear equations
in order to achieve second-order accuracy simultaneously with monotonicity. Numerical �ux
limiters can act like dynamic, self-adjusting models, modifying the numerical viscosity to
produce a non-linear eddy viscosity [5, 9, 12].

3. RESULTS

3.1. Decaying turbulence in a triply periodic cube

ILES of homogeneous decaying turbulence has been carried out in a three-dimensional cube
applying periodic boundary condition in each spatial direction. The same case has been em-
ployed by other researchers for diagnosing ILES [7, 9, 11]. The compressible Euler equations
have been employed on uniformly spaced grids of three di�erent resolutions 323, 643, and
1283 with initial conditions as described by Herring and Kerr [18, p. 2793]. The analysis of
the computational results has been performed by transforming the kinetic energy into Fourier
space via a power spectrum estimation. The energy spectra (ES) using the characteristics-based
(Godunov-type) scheme are shown in Figure 1 at dimensionless time t=1:07; t= lo=uo; lo is
the length of the box and uo is chosen to satisfy eo =�ou2o, where eo and �o are the reference
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Figure 1. Grid resolution studies using the characteristics-based (Godunov-type) scheme.

(total) energy and density, respectively, corresponding to Mach number M =0:1. We note that
separation of solenoidal and non-solenoidal components in the spectral analysis, as suggested
in References [4, 19], is required at higher Mach numbers, but at M =0:1 compressibility
e�ects are small. For the di�erent grid resolutions (Figure 1), we observe separation of the
energy spectra at both small and large scales. At wave numbers between 8 and 30 the energy
spectra approach Kolmogorov’s k−5=3 slope and decline more rapidly at higher wave numbers
(smaller scales) due to numerical dissipation.
A comparison of the simulation results using di�erent high-resolution schemes on the 1283

grid is presented in Figure 2. All schemes produce plausible solutions without resorting to
explicit addition of dissipation (e.g. through SGS modelling), but the computations reveal the
dependence of the results on the schemes’ details. The FVS and hybrid TVD schemes are
more dissipative, thus, leading to a sharper decrease in energy at wave numbers higher than
26. The FVS contribution to the hybrid �ux accounts for about 40% of the total �ux value.

3.2. Open cavity �ows

Compressible, turbulent �ow past an open cavity encompasses a variety of �ow phenomena
including large and small vortical structures, free shear layers, transitional �ow, �ow separation
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Figure 2. Results using di�erent high-resolution schemes on a 1283 grid.

and �ow re-laminarization, shock and rarefaction waves. DNS studies were performed in
Reference [20] at low Reynolds numbers to investigate the resonant instabilities in the �ow
past an open, rectangular cavity.‡ Further, experimental (and computational) results for cavity
�ows at high Reynolds numbers and supersonic speeds have been presented in Reference [21].
In this study, we have carried out under-resolved simulations for a broad range of transonic

and supersonic open cavity �ows using the hybrid TVD and characteristics-based (Godunov-
type) schemes and compared the results against the aforementioned experimental and DNS
data. In the DNS of Reference [20] the grid resolution was 15 times �ner than in the present
ILES studies. The characteristics-based scheme was found to provide less dissipative solutions
for the transonic cases. For the supersonic case the hybrid TVD scheme was preferred due
to its more dissipative properties. Instantaneous snapshots of the two-dimensional �ow at
M∞=0:8 and Re=1:813× 105 are depicted in Figure 3. Cavity resonance arises from a
pressure feedback loop including shear layer instability, separation at the leading edge, vortical
structures, noise radiation at the trailing edge and re-attachment.

‡The Reynolds number is Re=2500 based on the cavity depth and free stream velocity, which is equivalent to
Re=56:8 based on the momentum thickness at the cavity’s leading edge.
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Figure 3. Iso-density contours and streamlines at two di�erent time instants for the transonic cavity
�ow at M∞=0:8 and Re=1:813× 105.

Table I. Strouhal number comparisons of ILES with DNS [20] and experimental data [21].
The Re number is based on the cavity’s depth and free stream velocity.

Mach number Reynolds number ILES DNS Experiment

0.5 2.5× 103 0.730 0.74
0.6 2.5× 103 0.683 0.70
0.8 2.5× 103 0.635 0.65
1.5 4.5× 105 0.197 0.208

Table I shows results for the Strouhal number as predicted by the present ILES, DNS
of Reference [20] for transonic �ows (at low Reynolds numbers) and experimental data of
Reference [21] for supersonic �ow at high Reynolds number. The comparison of dominant
frequencies shows the applicability of ILES for open cavity �ows. Simulations for the transonic
cases using a SGS (Smagorinsky-type) model have shown no further improvement of the
results. This agrees with the conclusion of [3] that when no explicit subgrid scale modelling
is added, a high-resolution method will not add any unnecessary di�usion.

4. CONCLUDING REMARKS

Numerical experiments were conducted to investigate the accuracy and limitations of high-
resolution schemes in ILES using the compressible Euler and Navier–Stokes equations. The
results were found in good agreement with DNS and experimental data for the �ow past
an open, rectangular cavity. Reasonable results were also achieved in under-resolved simula-
tions of decaying turbulence in a triply periodic cube. Less dissipative �ux variants, e.g. the
characteristics-based scheme, and more dissipative ones, e.g. the hybrid TVD scheme, were
found to perform better in transonic and supersonic �ows, respectively. Variants of di�erent
hybrid TVD schemes are currently under investigation.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:971–977



LARGE EDDY SIMULATION OF COMPRESSIBLE TURBULENCE 977

ACKNOWLEDGEMENTS

The �nancial support from EPSRC, BAE SYSTEMS and MoD through the DARP consortium ‘Mod-
elling and Simulation of Turbulence and Transition for Aerospace’ is greatly acknowledged. The authors
would like to thank Fernando Grinstein and Piotr Smolarkiewicz for fruitful discussions on the problem
of decaying turbulence.

REFERENCES

1. Boris JP, Grinstein FF, Oran ES, Kolbe RJ. New insights into large eddy simulation. Fluid Dynamics Research
1992; 10:199–228.

2. Youngs DL. Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physics
of Fluids 1991; 3:1312–1320.

3. Margolin LG, Smolarkiewicz PK, Sorbjan Z. Large eddy simulations of convective boundary layers using
nonoscillatory di�erencing. Physica D 1998; 133:390–397.

4. Grinstein F. Vortex dynamics and entrainment in rectangular free jets. Journal of Fluid Mechanics 2001;
437:69–101.

5. Margolin LG, Rider WJ. A rationale for implicit turbulence modeling. International Journal for Numerical
Methods in Fluids 2002; 39:821–841.

6. Drikakis D. Embedded turbulence model in numerical methods for hyperbolic conservation laws. International
Journal for Numerical Methods in Fluids 2002; 39:763–781.

7. Smolarkiewicz PK, Prusa JM. VLES modeling of geophysical �uids with nonoscillatory forward-in-time schemes.
International Journal for Numerical Methods in Fluids 2002; 39:799–819.

8. Mallinger B, Drikakis D. Instability in three-dimensional, unsteady stenotic �ows. International Journal of Heat
and Fluid Flow 2002; 23:657–663.

9. Fureby C, Grinstein FF. Large eddy simulation of high Reynolds number free and wall bounded �ows. Journal
of Computational Physics 2002; 181:68–97.

10. Margolin LG, Smolarkiewicz PK, Wyszogrodzki AA. Implicit turbulence modeling for high Reynolds number
�ows. Journal of Fluids Engineering 2002; 124:862–867.

11. Youngs DL. Application of MILES to Rayleigh–Taylor and Richtmyer–Meshkov mixing. AIAA Paper 2003-
4102, 2003.

12. Drikakis D. Advances in turbulent �ow computations using high-resolution methods. Progress in Aerospace
Sciences 2003; 39:405–424.

13. Drikakis D, Rider W. High-Resolution Methods for Incompressible and Low-Speed Flows. Springer: Berlin,
2004.

14. Shu CW, Osher S. E�cient implementation of essentially non-oscillatory shock-capturing schemes. Journal of
Computational Physics 1988; 77:439–471.

15. Z�oltak J, Drikakis D. Hybrid upwind methods for the simulation of unsteady shock-wave di�raction over a
cylinder. Computer Methods in Applied Mechanics and Engineering 1998; 162:165–185.

16. Bagabir A, Drikakis D. Numerical experiments using high-resolution schemes for unsteady, inviscid,
compressible �ows. Computer Methods in Applied Mechanics and Engineering 2004; 193(42–44):4675–4705.

17. Eberle A. Characteristic �ux averaging approach to the solution of Euler’s Equations. Computational Fluid
Dynamics, VKI Lecture Series, Report 1987-04, 1987.

18. Herring JR, Kerr RM. Development of enstrophy and spectra in numerical turbulence. Physics of Fluids A
1993; 5:2792–2798.

19. Porter DH, Pouquet A, Woodward PR. Kolmogorov-like spectra in decaying three-dimensional supersonic �ows.
Physics of Fluids 1994; 6:2133–2142.

20. Rowley CW. Modeling, simulation, and control of cavity �ow oscillations. Ph.D. Thesis, California Institute of
Technology, 2002.

21. Zhang X. An experimental and computational investigation into shear layer driven single and multiple cavity
�ow�elds. Ph.D. Thesis, University of Cambridge, 1988.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:971–977


